If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+x-20=0
a = 8; b = 1; c = -20;
Δ = b2-4ac
Δ = 12-4·8·(-20)
Δ = 641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{641}}{2*8}=\frac{-1-\sqrt{641}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{641}}{2*8}=\frac{-1+\sqrt{641}}{16} $
| x+11=8x+11-7x | | x+10+x+10+x=26 | | 3x=-4x-+3 | | 3/4x+3=-9 | | 3/4x+3=-0 | | 3x=-4x+13 | | 3x-6+1=-4x+-8 | | 3x-5(x-2)=8+4x-24 | | Y=-2.3x+6.2 | | 3x-9+5x-6+2x+5=180 | | 3x-6+1=-4x=-8 | | s=3s+8-10 | | -0.65x=0.45x=5.4 | | 7(x–4)=84. | | 33=v+25 | | 12(m-3)-6-3m=3 | | -15=3(20-d)-2d | | 4(t+2)+(2t+3)=32 | | 9=13+y | | 4(t+2+(2t+3)=32 | | 4=p-8 | | -3(p+5)=27 | | 3c=-75 | | 6x-3x+7=16 | | h=-3(3h-1)-7h-5 | | 4w+2/7=4/5 | | 2x–9=-11. | | 3(u+4)=-3u+24 | | u÷8=12 | | F(x)=7(0.9) | | 2x/6-8=-14 | | -2y-36=-8(y+6) |